US009116959B2

a2z United States Patent (10) Patent No.: US 9,116,959 B2
Martinez et al. (45) Date of Patent: *Aug. 25, 2015
(54) SHARING A SINGLE INSTANCE OF A USER USPC 707/803, 999.001-999.005, 791, 796,
DEFINED TYPE 707/955
See application file for complete search history.
(75) Inventors: Andrea C.Martinez, Poughkeepsie, NY
(US); Charles Matula, Poughkeepsie, (56) References Cited
NY (US); David H. Starke,
Poughkeepsie, NY (US); Gregory R. U.S. PATENT DOCUMENTS
Wiley, Wappingers Falls, NY (US)
4,829,427 A * 5/1989 Greenoceioieiieienennn /1
(73) Assignee: Internati(?nal Business Machines 2:8?2:235 ﬁ * ?gggg Sgigrghnessy """""""" 711/100
Corporation, Armonk, NY (US) 6,708,186 Bl 3/2004 Clabom et al.
6,789,074 B1* 9/2004 Haraetal.cocooenenne /1
(*) Notice: Subject to any disclaimer, the term of this 6,941,316 B2 9/2005 Venkatesh et al.
patent is extended or adjusted under 35 20027/6218546’(7) ;g izl . 18; %88; gﬁjaﬂ it all' ~~~~~~~~~~~~~~~~~~~~~~~~~ S0 % é
auetal.
U.S.C. 154(b) by 84 days. 2002/0174138 Al* 11/2002 Nakamura etal. 707/200
This patent is subject to a terminal dis- 2003/0212660 A1* 11/2003 Kerwinccoooovnsiiineinnnee 707/1
claimer. 2005/0091255 Al* 4/2005 Rajan et al. 707/102
2005/0177551 Al 8/2005 Rathakrishnan et al.
2005/0289160 Al 12/2005 Ashwin et al.
(21) Appl. No.: 12/768,112 2008/0319939 AL* 122008 Tafifl ccocivccrrrrerercrerrnrnen 707/1
(22) Filed: Apr. 27, 2010 * cited by examiner
(65) Prior Publication Data Primary Examiner — Kannan Shanmugasundaram
US 2010/0211598 Al Aug 19.2010 (74) Allorney, Agenl, or Firm — DeLiO, Peterson & CurCiO,
’ LLC; Kelly M. Nowak; Ronald Kaschak
Related U.S. Application Data
. . 57 ABSTRACT
(63) Continuation of application No. 11/691,719, filed on
Mar. 27, 2007, now Pat. No. 7,779,037. Methods, systems and apparatus for implementing behavior
of'auser defined type (UDT) in a database by providing a data
(51) Int.ClL table with multiple rows and generating a UDT table having
GOG6F 7/00 (2006.01) only a single row. An instance of a UDT is created and stored
GOG6F 17/30 (2006.01) in the single row of the UDT table. A query having a Cartesian
GOG6F 17/00 (2006.01) product is implemented to join the UDT table and data table
(52) US.CL for invoking behavior of the UDT and generating a resultant
CPC ... GO6F 17/30483 (2013.01); GOGF 17/30342 data table without increasing cardinality thereof. The single
(2013.01); GO6F 17/30607 (2013.01); Y10S instance of the UDT may be shared amongst several users of
707/955 (2013.01) the database as a result of all required persisted objects of the
(58) Field of Classification Search UDT residing within only a single row of the UDT table.

CPC ... GOG6F 17/30483; GOGF 17/30607;
GOGF 17/30342

20 Claims, 4 Drawing Sheets

CREATE INSTANCE OF A USER DEFINED TYPE (UDT)

[

10

GENERATE TABLE (OR VIEW) WITH

ONLY A SINGLE ROW, AND STORE

INSTANCE OF UDT IN SAID SINGLE
ROW OF SAID TABLE (OR VIEW)

i

INVOKE AN INSTANCE OF UDT BY JOINING
SINGLE-ROW UDT WITH A DATABASE
TABLE USING A CARTESIAN PRODUCT

——— 30

U.S. Patent Aug. 25, 2015 Sheet 1 of 4 US 9,116,959 B2
uDT 1 uDT 2 UDT 3
R1 B 1] 21| 3 RED
R2 C 4 | 5 BLUE |GREEN
R3 BLUE
R4 B
FIG. 1

PRIOR ART

U.S. Patent Aug. 25,201

CREATE INSTANCE OF AUDT TABLE 1

AND STORE IN A TABLE
HAVING ONLY ONE ROW

5 Sheet 2 of 4 US 9,116,959 B2

TABLES WITH
MULTIPLE ROWS @

TABLE 2

UDT 1

20a,b
) :

2
|

A|B|C|METHOD 1| METHOD 2

10

| i

30 >

USING A CARTESIAN PRODUCT, JOIN UDT
WITH TABLE(S) AND INVOKE
METHODOLOGY OF UDT ON DATA WITHIN
THE TABLE(S) TO GENERATE A RESULT

_— |

RESULTANT TABLE 1

RESULTANT TABLE 2

RESULTS OF DATA mWITH
SELECTED METHOD OF UDT

RESULTS OF DATA WITH
SELECTED METHOD OF UDT

40a,b

RESULTS OF DATA [2]wiTH
SELECTED METHOD OF UDT

:‘,ﬁ E,; RESULTS OF DATA [1 JwitH

SELECTED METHOD OF UDT

RESULTS OF DATA WITH
SELECTED METHOD OF UDT

FIG. 2

U.S. Patent Aug. 25, 2015 Sheet 3 of 4 US 9,116,959 B2

CREATE INSTANCE OF A USER DEFINED TYPE (UDT)

¢ 10
GENERATE TABLE (OR VIEW) WITH C‘—‘j

ONLY A SINGLE ROW, AND STORE
INSTANCE OF UDT IN SAID SINGLE
ROW OF SAID TABLE (OR VIEW)

¢

INVOKE AN INSTANCE OF UDT BY JOINING

SINGLE-ROW UDT WITH A DATABASE K——— 30
TABLE USING A CARTESIAN PRODUCT

FIG. 3A

CREATE INSTANCE OF A USER DEFINED TYPE (UDT)

l

GENERATE TABLE (OR VIEW) WITH 10
ONLY A SINGLE ROW, AND STORE
INSTANCE OF UDT IN SAID SINGLE
30a ROW OF SAID TABLE (OR VIEW)

30b

FIRST INSTANCE OF INVOKING SECOND INSTANCE OF INVOKING
METHODS OF UDT BY JOINING METHODS OF UDT BY JOINING
SINGLE-ROWED UDT WITH A SINGLE-ROWED UDT WITH A
RELATIONAL DATABASE TABLE RELATIONAL DATABASE TABLE
USING A CARTESIAN PRODUCT USING A CARTESIAN PRODUCT

FIG. 3B

FIG.

U.S. Patent Aug. 25, 2015 Sheet 4 of 4 US 9,116,959 B2
MONITOR| - 400
201~ e —— /\ 200
| 7
PROCESSOR
vibDEO L ~216
INTERFACE
F 215 REMOTE |~ 300
eork K '-A)N COMPUTER
INTERFACE | 810 390 /@ WAN
210 | MODEM |—~214
SERIAL PORT — L~ 213
INTERFACE KEYBOARD
203~ |
209 ™~ MOUSE }~212
[- 208
OPTICAL D
INTERFACE \
207
[206
MAGNETIC I
INTERFACE T
205
- 204
HARD DRIVE
INTERFACE
MEMORY
ROMRAM | 202

4

US 9,116,959 B2

1
SHARING A SINGLE INSTANCE OF A USER
DEFINED TYPE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to data processing, and
more particularly, to storing and accessing an instance of a
user defined type in a table for optimization of a relational
database management system.

2. Description of Related Art

A Relational Database Management System (RDBMS)is a
database management system that uses relational techniques
for storing and retrieving data. Relational databases are orga-
nized into physical tables that consist of rows and columns of
data, wherein the data is defined so that it can be reorganized
and accessed in a number of different ways. A requesting
entity, which may be an application or the operating system,
requests database access using a high-level query language.

Simple algebraic operations, such as those embodied in
Structured Query Language (SQL), are used to process large
amounts of data within a relational database. SQL is a pro-
gramming language for getting information from, writing
information to and updating a database by allowing users to
formulate relational operations through queries or requests on
tables or views. These table queries may be interactive, in
batch files, or embedded in host languages, and may be used
to logically link information from multiple tables or views to
perform complex sets of procedures. In order to perform such
operations, SQL operators are provided that operate on one or
two tables and produce a new table as a result.

While relational databases are useful for storing and pro-
cessing large amounts of data, as the data types become
increasingly complex, more focused database models are
required for storing and processing such complex data. For
instance, object-oriented databases are able to integrate com-
puter code with a variety of different types of data, including,
complex and hierarchical data. In such a system, the data
values in a column may be objects which have user defined
types, which are complex data types that include both state
information and methods for using such state information.
However, since the ability to access data within an object-
oriented database is often cumbersome and difficult, these
types of databases are often undesirable and have hindered
the development of easy SQL-type access mechanisms.

More recently, object-relational databases have been
developed to include the advantages of both the relational and
object-oriented databases. Object-relational databases pro-
vide the flexibility of storing complex and hierarchical data,
along with the ability to access such data through database
methodologies, such as those used in relational database
modeling (e.g., SQL queries). However, current access to this
complex data requires iteration through data tables having
columns each with a number of rows. This requires the user of
the database to construct an algorithm, or even a number of
algorithms, to access such data, which in turn, is time con-
suming and leads to loss in productivity. Further, since the
user defined data may be accessed from different rows, which
may or may not reside in different tables, any inaccuracies in
the algorithm may undesirably result in the exclusion of or
dropping of required user defined data that another data type
directly or indirectly makes use of, thereby resulting in an
error.

Therefore, there continues to be a need in the art for
improved methods, systems and articles for storing and
accessing embedded data in a database management system.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

Bearing in mind the problems and deficiencies of the prior
art, it is therefore an object of the present invention to provide
methods, systems and articles for easily and efficiently stor-
ing and accessing embedded data in a database management
system.

Another object of the present invention is to provide an
efficient query system for accessing embedded data, particu-
larly, embedded user defined data, in a database system.

It is another object of the present invention to provide
methods, systems and articles for easily and efficiently stor-
ing and accessing embedded user defined data in a relational
database for sharing a single instance of such user defined
data.

Still other objects and advantages of the invention will in
part be obvious and will in part be apparent from the specifi-
cation.

The above and other objects, which will be apparent to
those skilled in the art, are achieved in the present invention,
which is directed to a method of implementing behavior of a
user defined type in a database management system. The
method includes providing a database having a data table with
multiple rows and generating within the database a user
defined type (UDT) table having only a single row. An
instance of a UDT having persisted objects is created and
stored within the single row of the UDT table. A query having
a Cartesian product is then implemented to join the UDT table
and data table for invoking behavior of the instance of the
UDT. The result is a resultant data table having an equivalent
cardinality as the data table.

The UDT may be a distinct UDT, a structured UDT or a
reference UDT. The database may be either a relational data-
base or an object relational database. Optionally the UDT
table may include multiple columns defined as various UDTs,
whereby every instance of the various UDTs each has only a
single row for storing their respective persisted objects
therein. From this single row, at least one or more of the
persisted objects are used by the query to invoke the behavior
of the UDT. These persisted objects may be data objects,
methodology or even combinations thereof.

In accordance with the invention, only a single instance of
the present UDT resides on the database. As such, the data-
base may have multiple data tables, each with multiple rows,
whereby upon implementing the query to join the UDT table
and each of these multiple data tables, behavior of the UDT is
invoked to generate multiple resultant data tables. An essen-
tial feature of the invention is that each of these multiple
resultant data tables has the same number of data rows (car-
dinality) as compared to the number of rows in its correspond-
ing data table with which the UDT table was joined.

In this aspect, either a single user or multiple users of the
database may use the present single instance of the UDT
table. The single user, or multiple users sharing the UDT
table, may generate additional queries for implementation on
the single instance of the UDT table of the invention. These
queries may be simultaneously or sequentially executed. The
methods of the invention are particularly useful for higher
order languages such as, for instance, SQL.

The invention is also directed to systems, articles and prod-
ucts for performing the present methods of implementing
behavior of a user defined type in a database management
system.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention believed to be novel and the
elements characteristic of the invention are set forth with

US 9,116,959 B2

3

particularity in the appended claims. The figures are for illus-
tration purposes only and are not drawn to scale. The inven-
tion itself, however, both as to organization and method of
operation, may best be understood by reference to the detailed
description which follows taken in conjunction with the
accompanying drawings in which:

FIG. 1 is a prior art illustration of a conventional user
defined type database table.

FIG. 2 is a flowchart illustrating one embodiment of an
aspect of a method of the present invention.

FIGS. 3A and 3B illustrate a UDT table of the invention
that may be invoked in a single query or shared amongst
several queries within a relational database management sys-
tem, respectively.

FIG. 4 is a block diagram representing an exemplary com-
puting device in which the present invention may be imple-
mented.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

In describing the preferred embodiment of the present
invention, reference will be made herein to FIGS. 1-4 of the
drawings in which like numerals refer to like features of the
invention.

A user defined type (UDT) is a data type created by a user
and stored in a database. Generally, user defined data types
contain state information and methods for invoking such state
information. As such, it is often desired, or even required, that
auser of the database access and use this type of data multiple
times for a given method, and/or even share such data type
amongst several users or entities of the database.

There are three user defined data types, namely, a distinct
type, a structured type and a reference type. A distinct type is
a UDT that shares its internal representation with an existing
type (its “source” type), but is considered to be a separate and
incompatible type for most operations. For example, one
might want to define a picture type, a text type, and an audio
type, all of which have quite different semantics, but which
use the same built-in data type for their internal representa-
tion. This allows the creation of functions written specifically
for each type (e.g., a picture), and assures that these functions
will not be applied to values of any other data type (e.g., text
and audio).

A structured type is a UDT having a structure defined in the
database and contains one or more named attributes, each of
which has a name and a data type of’its own. A structured type
can be a subtype of another structured type (called a super-
type), defining a type hierarchy. Each structured type may be
a type of table (i.e., typed table), view (i.e., typed view), or
column. Generally, within typed tables and typed views, each
column within such tables and views derives its name and
data type from one of the attributes of the structured type.
Rows of the typed table or typed view represent instances of
the structured type. A structured user defined data type also
includes a set of methodologies, whereby such methods are
used to retrieve and/or manipulate attributes of a structured
column object. A type cannot be dropped if certain other
objects use the type, either directly or indirectly. For example,
a type cannot be dropped if a table or view column makes
direct or indirect use of the type.

Reference user defined type is a companion to a structured
type. Like that of the distinct type, a reference type shares a
common representation with one of the built-in data types,
which is shared for all types in the type hierarchy. The refer-
ence type representation is defined when the root of a type

10

15

20

25

40

45

4

hierarchy is created, and when using the reference type, a
structured type is specified as the parameter.

Traditionally, regardless of the type of user defined data,
this data type is created and stored in a table or view having
columns with multiple rows. FIG. 1 shows an example of a
traditional relational database table with columns of UDTs
each with multiple rows, whereby data objects, and optionally
methodology, reside in the rows of each corresponding UDT.
In order to access data objects and methods within a given
row, aquery (i.e., a process or algorithm) that makes a specific
reference to the exact row having the desired data is used for
access thereof and invoking of any such methods therein.

However, a problem with the conventional UDTs is that
often a number of queries must be generated when the desired
data resides in a number of different rows within a UDT table
(e.g., a separate query for each row). Also, in order to mini-
mize cardinality (i.e., number of rows) of the resultant data
set, a number of separate UDT tables are often required for
joining against the various rows of the database table. As
such, these conventional UDT approaches are cumbersome
and time consuming, and may even provide inaccurate results
since all required data may not reside within a selected row of
the UDT and/or due to faulty queries (e.g., exclusion or drop-
ping of required user defined data), which leads to loss of
productivity.

The present invention overcomes these problems of the
prior art by providing improved methods and systems for
storing and retrieving user defined data types in relational
database or object relational database systems. The methods
and systems of the invention easily and efficiently store user
defined data types in a relational table of the invention, which
has only a single row. The invention also provides efficient
access to this stored user defined data so that a single instance
of such user defined data can be employed in a number of
different queries by a user, or even shared amongst various
users of the database, at their respective computers, for use in
a number of different queries.

FIG. 2 shows an instance of a UDT of the invention defined
on a database server. However, it should be appreciated that
many variations of the present single-rowed UDT table will
exist in accordance with the invention, whereby such UDT
variations can be any of the above-described types. In so
doing, a relational table is generated in a database manage-
ment system, whereby this relational table 10 has at least one
column of a UDT with only a single row. Alternatively, the
present UDT relational table 10 may be generated such that it
contains multiple columns of UDTs, each with only a single
row (i.e., one row) of persisted objects.

The persisted objects in the single row of the present UDT
table include data objects, methods and combinations thereof
for invoking behavior of the instance of the UDT. The UDT
behavior is implemented by using at least some, if not all, of
the data objects within the single-Towed UDT table. For
instance, referring to FIG. 2, the UDT table 10 may have a
number of data objects (e.g., data objects A, B, C, D, etc.) as
well as a number of different methods (i.e., method 1, method
2, etc.) that implement selected data objects, or even possibly
all of the data objects, within the single row UDT table. As
such, all necessary data objects and methods needed for
implementing methodology (i.e., behavior) of a persisted
object in the UDT table are stored in the present single row
UDT table, which essentially eliminates any exclusions or
dropping of required user defined data that the methodology
or other data types directly or indirectly use or rely upon.

Once the UDT table 10 of the invention is generated and
stored in the database, the methodologies therein may be
invoked against various other data tables within the relational

US 9,116,959 B2

5

database. For illustration purposes, and not to limit the inven-
tion, FIG. 2 shows two data tables 20a, 205 that reside in the
database. These tables 20a, 205 may be separate tables having
a number of columns (i.e., Table 1 column and Table 2 col-
umn) each with numerous rows of data, or it may be a single
table having both numerous columns and numerous rows.

In order to invoke methodology or generate behavior of the
present single-rowed UDT table, a query 30 is generated to
join the UDT table 10 with at least one column, possibly
multiple columns, of a separate database table (e.g., table 20a
and/ortable 205, etc.). An essential feature is that the query 30
of the invention includes a Cartesian product for joining the
UDT table to another table within the database.

As will be understood, a Cartesian product is a direct
product of all possible sets of ordered pairs of data from at
least two data sets (e.g., Cartesian product of two sets X and
Y is denoted as XxY={(x,y)IxeX and yeY}. For example, if
table X has three data rows, respectively containing data
objects 1,2 and 3, and table Y has two data rows, respectively
containing data objects a and b, when tables X and Y are
joined using a Cartesian product the cardinality (i.e., number
of'rows) of the resultant data table is significantly increased to
six rows containing, respectively, data objects 1a, 15, 2a, 25,
3a and 3¢. However, in the art of the invention, joined tables
each have numerous rows, or even complex data therein, such
that the cardinality of the resultant data table is deleteriously
large when numerous rows are joined against numerous rows.
As such, while Cartesian Products may be known in the art,
they are disfavored, particularly in higher order languages
(e.g., SQL), and generally result from a faulty query since all
combinations of rows of joined tables will be displayed,
which is undesirably time consuming, memory intensive and
leads to loss of productivity.

Advantageously, it has now been found that by generating
a UDT table with only a single row, and storing both data
objects and methodology (i.e., behavior) in this single row,
behavior is obtainable from the UDT without increasing car-
dinality of the resultant data set using a Cartesian product.
Another advantage is that because of the use of the present
Cartesian product query, the single-rowed UDT table of the
invention need only be generated once, as compared to con-
ventional UDT tables with a number of rows having to be
generated numerous times for joining with data rows in order
to avoid increasing cardinality of the resultant data set.

In accordance with the invention, a query 30 with a Carte-
sian product is generated such that it joins the UDT table 10
with one or more data tables 20a, 205 of the relational data-
base for invoking desired (or selected) methodology of the
UDT table 10 on the data residing within such data tables 20a,
20b. The desired method(s) of the UDT table 10 are invoked,
whereby selected ones, or all, of the data objects within the
UDT table 10 are used in the selected UDT method(s) along
with data from data tables 20a, 206 having rows (1 ... n). The
present query 30 includes a Cartesian product, such that,
when the single row UDT table 10 containing data and meth-
odology is joined with the rows (1 . .. n) of relational database
tables 20a, 205, the cardinality (i.e., number of rows) of the
resultant tables 40a, 405 are not increased over that of the
number of rows of joined relational database tables 20a, 205,
as is shown in FIG. 2. Further, since all necessary persisted
objects are contained within the single row of the present
UDT table 10, a single instance of UDT table 10 can be used
for every row of every joined database table, thereby avoiding
the need for separate instances of a UDT table for joined rows.

For example, the below query 30 (i.e., algorithm) or other
equivalent may be used to join relational database tables with
the preset single row UDT table 10 to generate useful result-

10

15

20

25

30

35

40

45

50

55

60

65

6

ant data tables without increasing the cardinality thereof. The
UDT table 10 is a single row UDT in SQL (i.e., SQL_S-
INGLETON(SINGLETON)) having an instance of a UDT
named CHANGE_INDICATOR with persisted objects of
methods named INIT and GET_INDICATOR. This UDT
table is to be joined to a first relational database table 20a
named TABLE_ONE and a second database table 205 named
TABLE_TWO. Using a SELECT . . . FROM clause, data
from database table 20a and methods of the
CHANGE_INDICATOR UDT (as well as any other persisted
objects within the UDT table that such methods rely upon) are
selected, with the FROM clause identitying such database
table 20a (i.e., TABLE_ONE) and UDT table (i.e., SQL_S-
INGLETON). The subset of data is treated as a new table,
which is typically a temporary table, called TEMP_TABLE_
ONE. Likewise, for the second database table 205 named
TABLE_TWO, this process is repeated to generate a tempo-
rary table called TEMP_TABLE_TWO.

The query 30 then uses a Cartesian product to SELECT all
the data in TEMP_TABLE_ONE (i.e., data from UDT named
CHANGE_INDICATOR and TABLE_ONE) and joins such
data ina UNION ALL command to generate “Resultant Table
1” 40a having the same cardinality (number of rows) as
relational database table 20a. Using the same instance of the
UDT, the query 30 also uses a Cartesian product to SELECT
all the data in TEMP_TABLE_TWO and joins such data in
another UNION ALL command to generate “Resultant Table
2” 405 having the same cardinality (number of rows) as
relational database table 205. A Cartesian product is inte-
grated into the present query 30 by eliminating WHERE
clauses within the algorithm, since a WHERE clause deter-
mines which rows should be returned in the result table. By
removing any instances of a WHERE clause, all rows in one
table will be joined against all rows in another table (i.e., a
Cartesian product).

WITH
SQL__SINGLETON(SINGLETON) AS

(
VALUES
CHANGE_ INDICATOR()...INIT(*VALUE")

),
TEMP_TABLE__ONE AS

(
SELECT
STATE__ VAR,
SINGLETON.GET__INDICATOR(STATE__VAR),
FROM
TABLE_ ONE,
SQL__SINGLETON

TEMP_TABLE_TWO AS

(
SELECT
STATE__ VAR,
SINGLETON.GET__INDICATOR(STATE__VAR),
FROM
TABLE_TWO,
SQL__SINGLETON
)
SELECT
*

FROM
TEMP_TABLE_ONE
UNIONALL

SELECT

*

FROM
TEMP_TABLE_TWO
UNIONALL

US 9,116,959 B2

7

It should be appreciated and understood that the above-
described query (or algorithm) is for exemplary purposes
only. Other software subroutines may be employed, obtaining
similar results through different coded functions. The present
invention is not limited to any one particular type of software
code, nor is it relegated to any one particular suite of functions
to obtain the resultant output.

Referring to FIGS. 3A and 3B, since the present UDT table
10 need only be generated once, only a single instance of this
UDT table is stored and resides on the relational database.
This single instance of the UDT table can be accessed and
used by a single user of the relational database, or it may be
shared amongst several users of the relational database, either
in a network environment or distributed computing environ-
ment. As shown in FIG. 3A, a single instance of the UDT table
may be invoked by a user to join UDT table 10 with a database
table using a Cartesian product. Alternatively, FIG. 3B shows
that the single instance of the UDT table may be used numer-
ous times either by a single user or by multiple users of the
database. The multiple uses of the single UDT table 10 may
be by a single user through either simultaneous or sequential
uses, or these multiple uses may be by several users of the
database at their respective locations, which may also be
simultaneous or sequential uses.

Accordingly, the invention provides an easy and efficient
approach to access and use data and methodology of a single
instance of a UDT table having only one row of persisted
objects, as well as allows sharing of this single instance of the
UDT table within a database management system. The inven-
tion also enables user(s) to easily, efficiently and simulta-
neously get behavior from this single instance of the UDT
table, without increasing cardinality of the resultant data set.
The invention is particularly useful in higher order languages,
such as, SQL.

While the invention has been described in the general con-
text of a database software program that runs on an operating
system in conjunction with a personal computer, those skilled
in the art will recognize that all, or any portion thereof, the
various systems, methods, and aspects of the invention may
be embodied in hardware, software, or a combination of both.
When embodied in software, any and/or all of the invention,
may be embodied in the form of program code, i.e., a set of
instructions, which may be stored on a computer-readable
medium. The computer-readable medium includes, but is not
limited to, a magnetic, electrical, or optical storage medium,
including without limitation a floppy diskette, CD-ROM,
CD-RW, DVD-ROM, DVD-RAM, magnetic tape, flash
memory, hard disk drive, or any other machine-readable stor-
age medium, wherein, when the program code is loaded into
and executed by a machine, such as a computer or server, the
machine becomes an apparatus for practicing the invention.

Those skilled in the art will also appreciate that the inven-
tion may be practiced with other computer system configu-
rations, including hand-held devices, multiprocessor sys-
tems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, and the
like. The invention may also be practiced in a network envi-
ronment or distributed computing environment, having
remote or local storage, where tasks are performed by remote
processing devices that are linked through a communications
network.

The invention may be embodied in the form of program
code that is transmitted over some transmission medium,
such as over electrical wiring or cabling, through fiber optics,
over a network, including a local area network, a wide area
network, the Internet or an intranet, or via any other form of
transmission, wherein, when the program code is received

10

15

20

25

30

35

40

45

50

55

60

65

8

and loaded into and executed by a machine, which again
becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program
code may combine with the processor to provide a unique
apparatus that operates analogously to specific logic circuits

For instance, referring to FIG. 4, an exemplary system for
implementing the invention includes a conventional personal
computer 200, including a processor 201 coupled to a system
memory 202 via a system bus 203. The system memory 22
includes read only memory (ROM) with an input/output
(BIOS), and random access memory (RAM with basic rou-
tines for transferring information between elements within
the computer and operating the present invention, including,
an operating system, a database management program, pro-
gram data, and various other program module.

Also connected to the system bus 203 is a hard disk drive
204 via a hard disk drive interface 205, a magnetic disk drive
206 via a magnetic disk drive interface 207 (to read from or
write to a removable disk), and an optical disk drive 208 via an
optical disk drive 209 for reading a CD-ROM disk). These
drives and their associated computer-readable media provide
nonvolatile storage for the personal computer 200. While the
foregoing has been described in relation to a hard disk,
removable magnetic disk and CD-ROM disk, any other types
of media that are readable by a computer, such as magnetic
cassettes, flash memory cards, digital video disks, Bernoulli
cartridges, and the like, may also be used in this exemplary
system.

Again, a number of program modules may be stored in the
hard drive interface and RAM, including an operating system,
one or more application programs, other program modules,
and program data. In particular, one of the program modules
is a database management software program that includes
certain embodiments of the invention described above. These
and other input devices are often connected to the processing
unit through a serial port interface 210 that is coupled to the
system bus, but may be connected by other known interfaces
(e.g., a game port or a universal serial bus (USB), etc.). Input
devices including but not limited to a mouse 212, keyboard
213 and modem 214 may be connected to the system bus 203
via a serial port interface. A monitor 47 (or other type of
display device) is also connected to the system bus 23 via a
video interface, such as a video adapter 48. In addition to the
monitor, personal computers typically include other periph-
eral output devices (not shown), such as speakers or printers.
Additionally, other input devices, such as a microphone, joy-
stick, game pad, satellite dish, scanner, or the like, may be
connected to the computer, as well as other peripheral output
devices, such as, speakers or printers.

The computer may operate in a networked environment
using logical connections to one or more remote computers,
such as aremote computer 300. This remote computer may be
a server, a router, a peer device or other common network
node, and typically includes many or all of the elements
described relative to personal computer 200. The remote
computer 300 may be connected to personal computer 200 by
a local area network (LAN) 310 via a network interface 215
(which is connected by the system bus 203) or a wide area
network (WAN) 52 via modem 214 (which may be internal to
the computer or external (i.e., connected by the system bus
203 by the input serial port interface 210)) or other means for
establishing communications over the WAN 52, such as the
Internet. Both the LAN and WAN networks are commonplace
in offices, enterprise-wide computer networks, intranets and
the Internet. It will be appreciated that the network connec-
tions shown are exemplary and other means of establishing a
communications link between the computers may be used.

US 9,116,959 B2

9

It will be appreciated that the principles of the invention are
not strictly limited to standalone database software programs,
but could equivalently be applied to any computer-imple-
mented system that involves the use of object-relational con-
cepts and data storage, or any application that a query system
is desired for accessing non-relational data structures. It will
be further appreciated that the invention could equivalently be
implemented on host or server computers other than personal
computers, and could equivalently be transmitted to the host
computer by means other than a CD-ROM, for example, by
way of a network connection interface.

An exemplary networked or distributed computing envi-
ronment includes a number of computing server objects and a
number of computing devices, with the server objects in
communication with the client computing devices (i.e., com-
puters) via a network, in which the present invention may be
employed. The network may be a LAN, WAN, intranet, the
Internet, or some other network medium, with a number of
client or remote computing devices and at least one server
computer. The computing devices may include, but are not
limited to, computers, various digital devices such as PDAs,
televisions, MP3 players, etc., software objects such as inter-
faces, COM objects and the like. For instance, in a network
environment in which the communications network is the
Internet, the servers can be servers with which the client
computing devices communicate via any of a number of
known protocols, such as, HT'TP. In accordance with the
invention, each object may contain an application that might
makeuse of an AP, or other object, software, firmware and/or
hardware, to request use of the processes used to implement
the object persistence methods of the present invention. Thus,
the network infrastructure enables a host of network topolo-
gies such as client/server, peer-to-peer, or hybrid architec-
tures.

While the present invention has been particularly
described, in conjunction with a specific preferred embodi-
ment, it is understood that changes may be made to the
embodiments described above without departing from the
broad inventive concepts thereof. It is also understood that
that the present invention may be embodied in any database
management system that supports the creation and use of user
defined types. Accordingly, it is evident that many alterna-
tives, modifications and variations will be apparent to those
skilled in the art in light of the foregoing description. It is
therefore contemplated that the appended claims will
embrace any such alternatives, modifications and variations
as falling within the true scope and spirit of the present inven-
tion.

Thus, having described the invention, what is claimed is:
1. A method of implementing behavior of a user defined
type in a database management system comprising:

providing a Cartesian product;

generating a query having said Cartesian product so that
said query is optimized with said Cartesian product after
said Cartesian product has been formed;

providing a database on a computer, said database having a
data table with multiple rows;

generating within said database a user defined type (UDT)
table having only a single row;

creating an instance of a UDT having persisted objects;

storing said instance of said UDT having said persisted
objects within said single row of said UDT table; and

implementing on said computer said query having said
Cartesian product to join said single row UDT table and
said data table, whereby using said query having said
Cartesian product

20

25

30

35

40

45

50

55

60

10

behavior of said instance of said UDT is invoked on said
single row UDT table and said data table to generate a
resultant data table having an equivalent cardinality as
said data table, said resultant data table being generated
after formation of said Cartesian product.

2. The method of claim 1 wherein said instance of said
UDT comprises a type selected from the group consisting of
a distinct UDT, a structured UDT and a reference UDT.

3. The method of claim 1 wherein said wherein just prior to
said step of joining said single row UDT table and said data
table are not modified so that said resultant data table has the
same number of multiple rows as said data table with multiple
rOws.

4. The method of claim 1 wherein said database comprises
a relational database or an object relational database.

5. The method of claim 1 wherein said UDT table further
includes multiple columns defined as various UDTs each
having only said single row.

6. The method of claim 1 wherein said instance of said
UDT includes persisted objects, whereby at least one or more
of'said persisted objects are used by said query to invoke said
behavior.

7. The method of claim 5 wherein said persisted objects are
selected from the group consisting of data objects, method-
ology and combinations thereof.

8. The method of claim 1 wherein only a single instance of
said UDT resides in said database.

9. The method of claim 1 further comprising:

providing said database having multiple data tables each

with multiple rows;

implementing on said computer said query having said

Cartesian product to join said UDT table and said mul-
tiple data tables; and

invoking said behavior of said instance of said UDT on said

computer to generate multiple resultant data tables with-
out increasing cardinality of each said resultant data
table, said multiple resultant data tables being generated
after formation of said Cartesian product.

10. The method of claim 1 wherein a single user imple-
ments said query to invoke said behavior.

11. The method of claim 10 further comprising said single
user generating at least a second query for implementation on
said UDT table to invoke additional behavior of said UDT.

12. The method of claim 11 wherein said query and said
second query are implemented simultaneously.

13. The method of claim 11 wherein said query and said
second query are implemented sequentially.

14. The method of claim 1 further comprising multiple
users of said database sharing a single instance of said UDT
table.

15. The method of claim 1 wherein said multiple users
share said single instance of said UDT table by implementing
a number of different queries on said UDT table.

16. The method of claim 15 wherein said query and at least
some of said different queries are implemented simulta-
neously.

17. The method of claim 15 wherein said query and at least
some of said different queries are implemented sequentially.

18. The method of claim 1 further comprising performing
said method in said database management system using SQL.

19. A computer program product comprising:

a non-transitory computer usable medium having com-

puter readable program code means embodied therein
for implementing behavior of a user defined type in a
database management system, said program code, when
executed on a computer, causing the computer to:

US 9,116,959 B2

11

provide a Cartesian product;

generate a query having said Cartesian product so that said
query is optimized with said Cartesian product after said
Cartesian product has been formed;

provide a database having a data table with multiple rows;

generate a user defined type (UDT) table having only a

single row within said database;
create an instance of a UDT having persisted objects;
store said instance of said UDT having said persisted
objects within said single row of said UDT table; and

implement said query having said Cartesian product for
joining said single row UDT table and said data table,
whereby using said query having said Cartesian product

behavior of said instance of said UDT is invoked on said
single row UDT table and said data table to generate a
resultant data table having an equivalent cardinality as
said data table, said resultant data table being generated
after formation of said Cartesian product.

20. An article of manufacture comprising a processor and a
program storage device readable by and running on the pro-
cessor capable of executing instructions and tangibly
embodying a program of instructions executable by the pro-

10

15

20

12

cessor to perform method steps for implementing behavior of
a user defined type in a database management system, said
method steps comprising:

providing a Cartesian product;

generating a query having said Cartesian product so that
said query is optimized with said Cartesian product after
said Cartesian product has been formed;

providing a database having a data table with multiple
rOWS;

generating within said database a user defined type (UDT)
table having only a single row;

creating an instance of a UDT having persisted objects;

storing said instance of said UDT having said persisted
objects within said single row of said UDT table; and

implementing said query having said Cartesian product to
join said single row UDT table and said data table,
whereby using said query having said Cartesian product

behavior of said instance of said UDT is invoked on said
single row UDT table and said data table to generate a
resultant data table having an equivalent cardinality as
said data table, said resultant data table being generated
after formation of said Cartesian product.

#* #* #* #* #*

